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R. O. Genga 1 

Received February 26, 1992 

We derive a high-frequency expansion for all elements of the quasi-one-dimen- 
sional quantum plasma dielectric tensor at T=0 K for quantum particles with 
spins. In addition to the known results for spinless case, we find that ~ s ( k )  and 
if22J rk~ s.s~ ~ are the only frequency moments of the dielectric tensor with spin terms. 
Further, we find that there is no spin effect on quantum plasma dispersion 
for both ordinary and transverse modes propagating either along or across the 
external field, 

1. INTRODUCTION 

High-frequency sum rules of the full dielectric tensor in the absence and 
presence of external magnetic field for both classical nonrelativistic and 
relativistic plasmas and quantum nonrelativistic plasmas with spinless parti- 
cles at T = 0 K  are known (Kalman and Genga, 1986; Genga, 1988a c, 
1989a-c). However, for a quantum nonrelativistic plasma with spin particles 
the existing work pertains to the application of the third moment to the 
electric and magnetic response function (Goodman and Sjonlander, 1973). 
The high-frequency sum rule is exact, but requires that ~co -141 and 
COpCO-~ <~ 1, where ~=eB/mc and co2p=4zre2n/m. 

In this work we consider the high-frequency sum-rule expansion to 
order c0 -s for the full dielectric tensor of quasi-one-dimensional quantum 
nonrelativistic plasmas with spin particles at T=0  K in regions where the 
external magnetic field is of the order of 10 Is G, such as in pulsars. In these 
regions, we find that when the Fermi energy of electrons is lower than the 
excitation energy of the Landau levels, i.e., p2/2m ~ h~, only the lowest 
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n = 0 level is occupied, and the mobility of the electrons is therefore entirely 
determined by the value of the momentum along the z axis, i.e., p = p :  
(Canuto and Ventura, 1972; Genga, 1988b,d). This leads to a one-dimen- 
sional quantum plasma; this is realizable in situations where the particle 
density is low and the magnetic field is intense. 

In Section 2 we review the derivation of the full dielectric tensor, 
whereas the e x a c t  co -z,  (_0 -3, 0) -4, and 0)-s sum-rule coefficients are calculated 
in Section 3. In Section 4 the long-wavelength aspect of the results of Section 
3 is considered; the possible spin effects on high-frequency quantum plasma 
modes, i.e., the plasma mode and the high-frequency extraordinary mode 
for propagation parallel, perpendicular, and oblique to the magnetic field, 
respectively, are determined in Section 5. 

2. DIELECTRIC TENSOR 

As in the spinless situation, we treat an electron plasma in a constant 
homogeneous magnetic field quantum mechanically. While treating the mag- 
netic field exactly, a perturbation approach in the photon field is used 
to derive the general expression for the dielectric tensor as (Canuto and 
Ventura, 1972; Pines and Nozi6res, 1966; Genga, 1988b,c) 

v(kO) = 6"" + ~ Tk v ~ + O""(kco) (1) 

l 

6/1 
CO x 

where 

4;roe 2 
O"V(k0)) = 0)2 Z~v(kc~ (2) 

k , k  v 
X~ ~ = a ~ v _ _ _  ( 3 )  

k 2 

with 

X~v(k0)) = Z <0, slnff(r)ls, n> <n, 4n,~ls, o> 
ups  

E ' ' 1 x (4)  
co - co,,o(p, p + hk/2)  + iq co + (O.o(p, p - hk /2)  + io 

which is the spin current-current response tensor and 

II~ = 1 _  Z <  [11,." exp(ik �9 xi) + exp(ik �9 x~)Flf] 
2m i 

FI{'= P{' + eA~ 

(5) 

(6) 
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For the arguments of CO.o and the summation over p in equation (4) we 
have, as in the spinless case, that 

P=P~, k=kz (7) 

Consequently, for the summation over S in equation (4) we have 

s = s ~  (8) 

The matrix elements and excitation frequencies that appear in equation (3) 
are those appropriate for a system of electrons with Coulomb, spin, and 
external magnetic interactions, but without any transverse self-consistent 
magnetic field interactions. 

3. SUM RULES 

The complete modified polarizability tensor O'V(kco) is expressible in 
terms of the corresponding "external" quantities OUV(kco) as (Genga, 
1988b,c) 

0(kco) = c~(A- a)-JA (9) 

where 

A=~-n2T,  n2 kc k ' k  
=--'co T=~ k2 (10) 

It is known (Genga, 1988b,c; 1989c) that aU~(kco) possesses the high- 
frequency sum-rule expansion 

p v  

~..V(kco ) = _  n~.,+,(k) (1 l) 
1= I 0 ) 1 +  I 

/ o d d  

p v 

a.,,VV(kco) = - n. j+l(k) ,~2 ~ (12) 
I even 

where the superscript H stands for "Hermitian part of";  the single and 
double primes denote "real part of" and "imaginary part of," respectively, 
and the ~ v coefficients are obtained from equation (2) in the limit as q ~ 0 
to be of the form 

~ p v  f~s,,+, (k) = 4zre z Z {[co.o(P, P - hk/2)] '-2 
rips 

x (0, slFl~(r)s, n) (n, slII~ls, 0) 

-[-co.o(P, P + hk/2)]/-2(0, slII~-klS, n) 

• (n, slrl~(0)ls, 0)},~0 (13) 
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The high-frequency expansion of cTUV(k) is known (Kalman, 1978; Kalman 
and Genga, 1986; Genga, 1988a-c) to be similar to that of 6"V(kc0) given 
by equations (11) and (12), with ~'V(k) replacing the corresponding 
O~V(k). The relationships between the two sets of coefficients up to l= 4 are 
the same as for the spinless case, i.e., 

" , u v  - -  ~--uv ~s,2 (k) - ~-2s,2 
,uv __ ~--pv .,s (k) - Ds,3 

~ ,~ t , .~ -Au~  A;,,,A~v (14) 
s,4 ~ ' 1  - -  a ~s,4 - -  ~ ~s,2 ~ ~s,2 

~--,v __ ~--pv ApaA~v__~ttAav 
~"~s,5 ( k )  - -  ~'~s,5 - -  "~s ,2  e'e"s,3 ~ as,3 . . . .  2 

The Hamiltonian of the system that satisfies equation (13) is given by 

II 2 
p g . B + � 8 9  Z V(x,-xj)  (15) 

H = ~i 2m i 2~ -  i+j 

where ~ is a unit spin vector, B = B~ ~ is a unit magnetic field vector, p = 
eh/mc is the magnetic moment, and s = �89 The second term on the right- 
hand side of equation (15) is the interaction due to spins, whereas V(x,-Xi) 
is the interaction potential between a pair of particles and is independent of 
velocity. 

Finally, with the above information, we now calculate the frequency 
moments (up to l=4). For an anisotropic system in the presence of an 
external magnetic field as in our case it is known (Genga, 1988a,b, 1989b) 
that ffu~ is nondiagonal; hence both even and odd moments of ~fg~ exist. 
The real diagonal and off-diagonal elements of Dsj+-'v ~ satisfy the symmetry 
condition (Genga, 1988a,b, 198%) 

~pv -- ~ v , u  D~,,+, (k) - f2s/+, (k) (16) 

and the imaginary off-diagonal elements satisfy the antisymmetric condition 
" p v  - -  ~ u v  f2~.t+ l(k) - -f2~./+ ,(k) (17) 

The first moment is trivial, 
A UV 
D,,2(k) 

=4zre2 ~ I(0,  sllI~ln, s) (n, S[TLvklS, 0) 

.p~ L COco(p, p + hk/2) 

(0, slrc~-kln, s)  (n, sl~gls, 0>] 
-4 

CO,o(p, p + hk/2) 1,= o 

= D2 av(k) (18) 
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where (Genga, 1988b) 

fiz(k) 2 .~ =copL , L~ ~=kukv/k 2 

The second moment is given by 
~---,uv 
f~s,3 (k)= 4roe 2 2 [<0, slzr~in, s> (n, SIZC~-klS, 0) 

rips 

- (0,  slTrgln, s )  <n, slrr~_klS, O)],=o 

= 2zre2(0, s[[rc~, Jr'_k]- [ZC2k, rCg]10, S)I,=0 

where (Genga, 1988b) 

m c  

(19) 

(20) 

(21) 

The third moment yields 

fi~(k), =41re 2 . p s I ( Z  co.o p,p-~-)(o,~k/stgi~fn, s) (s, rttI-[V_k]0, s) 

+ co.o( p, p + h--ff )( O, slFU-kln, s) (s, nlII"-klO, s) ],=o 

= 2~re2(0, s[[rI~, H l, n~-k] + [[n~, H], rI"MIo, s)l,=o 
= f~v 

where (Genga, 1988b) 

eB ~ hk~(O,s]eUov~+ 0 +e~"v 0 
fi4~V(k) = c@ 2m2~- ~ Ox" e"~ Ox v Ox ~ 

+i*'~"v e ~"~ eB~ eB~ ]ikUe""V(s, 01 ~3 
2hc Zal0' s) - co~ 4m2~ OX---'g 

+ie~eB~ x~tO, s ) 2 eB~ hUe..~(s, Oi 
2hc - cop 4m2~ 3x ~ 

+ieo.o ~e_~ z~lO ' s ) -  co~ eN ~k~k.(s, 012mc(eBO)., 0 
2hc P 2m2c Ox a Ox ~ 

(22) 
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~176 li2k~kV (s, OI2mc( eB~ - z 
2m2 c 

02 

OX a OX ~ 

+iea.t~Zt~ 0 e~.uea.t 3 eB ~ OX--- ~ ~ (Z~)21 O, s) - -  

0 ie'~OUZ'~ _ _  
OZ u 

2 0 
copeB, h2k,~k ~ 
2m2c 

x (s, OI2mc(eB~ -1 02 ie ~"p" ~ 0 ie~.u. ,~ 0 
OZ u OZ~ z OZ F, x OZ~ 

e""~etJ"~ eB~ "%'elO sX' + ~/z~ "q (Su-q-S,)lO, s) 

(23) 

The fourth moment leads to 

~"v .ps ] s) nlIV-kl0, s> f~s.s(k)=4Jr2 ~ {[CO.o(p,p-h-ff ) 2(s, OlII~(t),n, (s, 

-[-CO.o( P, P -  h-ff~ )12(s, OlIl~ln, s) (s, nllISu( t)lO, s) } ,=o 

= 2IIe2(s, 01[[[n~, H 1, H l, II~-kl- [[[rl-~k, H 1, H l, l-I~,lt0, s)l,=o 

= fi~ "(k) + ~-s.SA" v* tk-~t .~ (24) 

where 

^ 2 eB~ hk(s, O l e ' u ~ e ~ e  ~"a (eB~ p 
~ ~(k) = cop 4m3c---- 5 4mhc Z 

+ 7e~,uzr~.aCOPeBO za O + s~, ,~C~ (eB~ 2 O 
OZ " 8mtic OZ ~ 

+ eu.~,e,,.~ (eB~ 2 3 ~_ie~,.,~e,~.p (eB~ 3 
8mhc OZ V 16m2tic 2 

O co~eB ~ 02 
+ i6""~e~"~eB ~ ~Z ~ IO, s) + ~m2c ]i2k~kU(s, Oli7e ~u~ - -  

OZ ~ OX ~ 
o B 2  

OZ '~ t~e e m~2c ~ -iv, ~/ 

2 e B~ 0 2 e B ~ 0 

4m c 3Z" OZ ~ ]ic 3Z a 
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2 2 0 02 
+ i7 e . .~  e~op (eB~ ) . . .  OJpeB n k~kU (s,  01i6e ~"~' _ _  

m n c ,+m c OZ ~ OZ v 

0 2 0 2 eB ~ 
.3 F vrllt 3 + i6e voa ~- l~ ~ ~ e~aeVqa 

OZ ~ OZ u OZ ~ OZ ~ h2c 

+ 3ev"~ e~" a eB ~ Ze  O~_+ 3eVO~ e~, e eB ~ Za O 
hc OZ v gc dx" 

+ (eB~ o 
m f i 2 c  2 h2c  , 

(o2e R0 
0ILk + n Y ' ( e  " Lq ) (Su-q-Sq) lO,  s )  (25) + i~_p~O (s,  ~,~ 1 , ~ ~ 

2m~c q 

is already known (Genga, 1988) and 

~ * t k ~ - - 2 / 1  B~ rce2 
~,5 ~ j - - -  (s, 0[~" 13{[[H~, H], H~-k] + [[FI~-k, H], FI~]I0, s)} 

m 2 s  

- 2/"tB~ ~ V ( k )  cos 0 
S 

= 2flg~'"(k) cos 0 (26) 

is the term due to spins; 0 is the angle between the external magnetic field 
B ~ and the spin vector s, f ~ = e B ~  is the electron cyclotron frequency, 
and f ~ ( k )  is the third frequency moment as given by equation (23). The 
factor of 2 in equation (26) is due to spin orientation. However, from the 
above we know that ~4 ~ ~(k) are not coefficients of  the imaginary off-diagonal 
elements and consequently vanish in this case, i.e., 

~/Jv f~,5(k) = 0  (27) 

~ , we choose the k- In order to obtain an explicit expression for - ~  
system, in which (Genga, 1988) 

k = (0, 0, k), B ~ = (B ~ sin 0, 0, B ~ cos 0) (28) 

(where 0 is also the angle between the wave vector k and the external 
magnetic field B0), and 

q = (q sin 0 cos 0, q sin 0 sin 0, q cos 0) (29) 

The Landau gauge leading to the components of the magnetic field given in 
equation (28) is known (Genga, 1988b) to be of  the form 

A ~ �89 B ~  ~ 0) (30) 
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4. L O N G - W A V E L E N G T H  L I M I T  

The  long-wavelength  (k ~ 0) limit o f  equat ions  (19)- (26)  leads to ele- 
ments  of  the f requency m o m e n t s  o f  the fo rm 

~ l l  ~ 2 2  
n~,2(k)  = n~,2(k)  = 0 

""33  _ 

12 21 -f2s,3 (k) = ic02f~ 0 s (k )  = COS 

--~ 23 __ 32 
--~')s,3 (k )  = icopg) 0 ~-'~s,3 (k )  -- COS 

2 

2 ~Op Ecorrk 2 
1 5 m  

---All 
O .4(k) . . . .  

~ 1 3  
~"~s,4(k) = 0  

A 22 
~ , 4 ( k )  . . . .  

2 

2 ogp E~o~rk 2 
15 in 

09 2 
33 4 p 4 2 

ns,4(k)  = cop - - -  ( 6 E r -  :Ecorr)k 
m 

2 o  A 
12 --'~ 12 (..Op~ ~ Jr" f2,,:(k) = -g)~,s(k) = - i  - -  3EF+SE~o~)k  2 cos 0 

4m 

A 2f~ 
--~ 23 f~s,5(k) = ff~3~(k) = - i  co~2+ 12 2 - 15EF+:3Eoorr)k cos 0 

4m 

( 3 1 )  

where 

PV 
EF = (32) 

2m 

and 

n _ 41re 2 
Ecorr=- Z-- - -5-gq 

O q q 

is the correlat ion energy, which is negative. 
F r o m  equat ion (31) we find that  there is no  spin effect in f~ . . . .  Hence,  

we conclude that  there is no spin effect on high-frequency nonrelat ivist ic 
quan tum p lasma modes  p ropaga t ing  a long and across the magnet ic  field, 
respectively. 
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